Spectral methods in structure determination

	H-1	C-13	MS	IR/RAMAN	UV-VIS	ORD/CD	X-RAY
•Radiation type	RF	RF	Not relevant	IR	UV to visible	UV to visible	X-ray
Spectral scale	0-15 ppm	0-220 ppm	50-4000 amu	400-4000 cm ⁻¹	200-800 nm	185-600 nm	Not relevant
•Average sample	≅ 1 mg	≅ 5 mg	< 1 mg	< 1 mg	< 1 mg	< 1 mg	Single crystal
•Molecular formula	Partial	Partial	Yes	No	No	No	Yes
•Functional groups	Yes	Yes	Limited	Yes	Very limited	Very limited	Yes
•Substructures	Yes	Limited	Yes	Limited	Limited	No	Yes
 Carbon connectivity 	Yes	Yes	No	No	No	No	Yes
•Substituent regiochemistry	Yes	Yes	No	Limited	No	No	Yes
•Substituent stereochemistry	Yes	Yes	No	Limited	No	No	Yes
•Analysis of isomer mixtures	Yes	Yes	Yes (by GC/MS LC/MS)	Yes (by GC/IR)	No	No	Yes (if separate)
Purity information	Yes	Yes	Yes	Yes	Limited	Limited	Limited
•What is measured	Peak areas Chemical shifts Coupling relaxation	Chemical shifts Coupling relaxation	Singly or multiple charged ions	Vibrational transitions	Electronic transitions	[α]	Relative atom positions R/S absolute stereochemistry
Typical units	δ (ppm)	δ (ppm)	m/z	cm-1	nm	nm	
Typical representations			80 112		210		趣
							ORTEP

Hz, 1 H), 3.01 (dd, J=7.5, 15.3 Hz, 1 H), 1.12–1.00 (m, 21 H); 13 C NMR δ 163.9, 161.9, 144.0, 133.5, 79.9, 64.6, 52.2, 31.0, 18.0, 12.5, 12.0; IR (neat) ν 2944, 1748, 1731, 1585, 1324, 1111 cm⁻¹; mass spectrum (FAB) m/z 372.2201 (C₁₈H₃₃NO₅Si + H requires 372.2206).

4-Carbomethoxy-2-(2'S-methoxy-4'-hydroxy)-1,3-oxazole, 12d. To a solution of 12c (12 g, 32 mmol) in THF (70 mL) at 0 °C was slowly added a solution of 1.0 M TBAF (48 mL, 48 mmol) in THF. After 12 h, solvent was removed in vacuo and the crude alcohol was purified via column chromatography eluting with EtOAc (9:1) to give 6.2 g (89%) of 12d as an orange oil: $[\alpha]_D = +17.5^\circ$ (c 1.0, CHCl₃); 'H NMR δ 8.14 (s, 1 H), 3.86 (s, 3 H), 3.80–3.50 (m, 3 H), 3.36 (s, 3 H), 3.12 (dd, J = 6.1, 15.2 Hz, 1 H), 3.05 (ddd, J = 1.0, 6.5, 15.2 Hz, 1 H), 2.28 (brs, 1 H); ¹³C NMR δ 162.9, 161.5, 144.0, 133.3, 79.0, 63.0, 57.5, 52.1, 29.6; IR (neat) ν 3418, 1732, 1586, 1324, 1110 cm⁻¹; mass spectrum (FAB) m/z 216.0869 (C₉H₁₃NO₅ + H requires 216.0872).

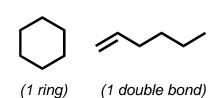
4-Carbomethoxy-2-[2'S-methoxy-3'(E)-penten-5'-al]oxazole, 13. To a solution of the alcohol 12d (2.5 g, 11 mmol) in CH₂Cl₂ (12 mL) at 0 °C were added DMSO (11 mL, 160 mmol) and Et₃N (11 mL, 80 mmol), and the mixture was stirred for 10 min. Solid SO₃-Pyr (9.1 g, 57 mmol) was then added in one portion, and the reaction was stirred for 30 min at 0 °C and

Unsaturation Number (UN)

Given the molecular formula of an unknown, can guess the combined number of rings and multiple bonds (called the "unsaturation number").

UN =
$$\# C - \frac{\# H}{2} - \frac{\# Hal}{2} + \frac{\# N}{2} + 1$$

Unsaturation Number (UN)


UN = #C -
$$\frac{\text{# H}}{2}$$
 - $\frac{\text{# Hal}}{2}$ + $\frac{\text{# N}}{2}$ + 1

For **C**₆**H**₁₂,

$$UN = 6 - \frac{12}{2} - 0 + 0 + 1$$

UN = 1 (ring or double bond)

Candidate structures for C_6H_{12} :

