The NMR Phenomenon

Magnetic Field and Nuclear Spin

(on display in NMR facility)

1. Nuclear Spin

Total nuclear spin is analogous to electron spin, but does not follow "Aufbau" principle—so convenient to look up in tables.

Three main types of nuclei:

- *I* = 0 (¹²C, ¹⁶O, ³²S). No spin, no NMR.
- I = ½ (¹H, ¹³C, ¹⁹F, ²⁹Si, ³¹P; "dipolar nuclei"). Simplest and most common nuclei studied by NMR.
- *I* ≥ 1 (²H, ¹⁴N; "quadrupolar nuclei"). Less frequently studied, but have important coupling behavior with *I* = ½ nuclei.

1. Nuclear Spin

¹H ($I = \frac{1}{2}$) in CH₃OH as an example.

 $I = \frac{1}{2}$

total spin states = 2I + 1= 2

$$M_I = +1/2, -1/2$$

1. Nuclear Spin

¹H ($I = \frac{1}{2}$) in CH₃OH as an example.

In the absence of an applied field, nuclei are randomly oriented.

Energies of all nuclei are equivalent.

$$E \begin{bmatrix} M_I &= -\frac{1}{2} \\ M_I &= +\frac{1}{2} \end{bmatrix} =$$

Spins do interconvert periodically.

2. Applied Static Magnetic Field

¹H ($I = \frac{1}{2}$) in CH₃OH as an example.

2. Applied Static Magnetic Field

Sensitivity of NMR is dependent on population distribution. So, sensitivity depends on:

- 1. Applied field strength **B**_o;
- 2. Magnetogyric ratio of nucleus γ ;
- 3. Abundance of spin in population.

	Nuclei of Major Interest to NMR Spectroscopists							
	Isotope	Abundance (%)	z	Spin	μ^{a}	$\gamma \times 10^{-8^{b}}$	Relative ^c sensitivity	ν ₀ at 1T (MHz)
great nucleus.	¹ H	99.9844	1	1/2	2.7927	2.6752	1	42.577
	² H	0.0156	1	1	0.8574	0.4107		6.536
	¹⁰ B	18.83	5	3	1.8006	0.2875		4.575
	¹¹ B	81.17	5	3/2	2.6880	0.8583		13.660
not so great.	¹³ C	1.108	6	1/2	0.7022	0.6726	1.76 x 10 ⁻⁴	10.705
	¹⁴ N	99.635	7	1	0.4036	0.1933		3.076
poor.	¹⁵ N	0.365	7	1/2	-0.2830	-0.2711	3.85 x 10 ⁻⁶	4.315
also great.	¹⁹ F	100	9	1/2	2.6273	2.5167	0.83	40.055
	²⁹ Si	4.70	14	1/2	-0.5548	-0.5316		8.460
also great.	³¹ P	100	15	1/2	1.1305	1.0829	6.65 x 10 ⁻²	17.235

^a Magnetic moment in units of the nuclear magneton, $eh/(4\mu M_p c)$.

^b Magnetogyric ratio in SI units.

^c For equal numbers of nuclei at constant field.

Big Fields Means Big Magnets

Interior of a 4.73 T magnet (on display in NMR Facility, Smith Hall)

Installation of 16.45 T magnet in Hasselmo Hall.

An NMR Facility

2. Applied Static Magnetic Field

3. Applied Radiofrequency Pulse

- Oscillating applied field
- Frequency matched to Larmor frequency of precessing nucleus
- B₁ makes individual precessing vectors follow oscillation
- As a result, M_o also follows oscillation
- If B₁ is halted, M_o relaxes back to original state