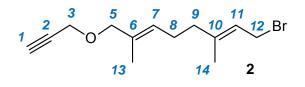

Problem Set 1 Solutions

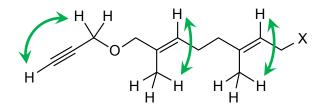
Basic 1D NMR Interpretation


1. a.

proton	intensity	chemical shift multiple		coupling constants
		(δ, ppm)		
H ₁	<1H	2.413 t		<i>J</i> _{1,3} = 2.5 Hz
H ₃	2H	4.065	d	<i>J</i> _{1,3} = 2.5 Hz
H_5	2H	3.920	S	none
H ₇	1H	5.413	t	J _{7.8} = 5.9 Hz
and	and	and	and	and
H ₁₁	1H	5.391	t	<i>J</i> _{11,12} = 6.5 Hz
H ₉	2H	2.159		broad on tough to
and	and	and	?	broad, so tough to
H ₈	2H	2.061		interpret
H ₁₂	2H	4.127	d	<i>J</i> _{11,12} = 6.5 Hz
H ₁₃	3H	1.662	S	
and	and	and	and	
H ₁₄	3H	1.638	s	
OH		1.7 ?		

Here I've chosen not to specify which resonance goes with which proton for the H_7/H_{11} and H_8/H_9 pairs of protons, because the NMR evidence isn't conclusive, but I do think you can make guesses. Of H_7 and H_{11} , H_7 is closer to an electron-withdrawing, deshielding oxygen atom, so I would guess that H_7 would be downfield of H_{11} , and the same argument places H_9 downfield of H_8 .

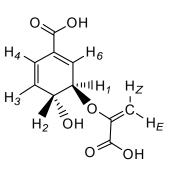
It's not clear where the alcohol proton is. It might be the broad hump at 1.7 ppm, which is difficult to integrate because of overlap with other protons and junk; or it could be that the hydrogen-bonded peak is so broad that it disappears.



proton	intensity	chemical shift	multiplet	coupling constants
		(δ, ppm)		
H ₁	<1H	2.418 t		<i>J</i> _{1,3} = 2.4 Hz
H ₃	2H	4.084	d	<i>J</i> _{1,3} = 2.4 Hz
H_5	2H	3.940	S	none
u	1H	5.413	ta	J _{7,8} = 7.0 Hz
H ₇	IT	5.415	tq	^{and} J _{7.13} = 1.1 Hz
H ₉	2H	2.177		
and	and	and	?	broad, so tough to
H ₈	2H	2.138		interpret
	411	E E 4 2		$J_{11,12} = 8.4 \text{ Hz}$
H_{11}	1H	5.543	tq	^{and} J _{11.14} = 1.5 Hz
H ₁₂	2H	4.022	d	$J_{11,12} = 8.4 \text{ Hz}$
H ₁₃	3H	1.658	d (barely)	<i>J</i> _{7,13} = 1.1 Hz
H ₁₄	3H	1.738	d	<i>J</i> _{11,14} = 1.5 Hz

Here, you can make absolute assignments that you couldn't for molecule **1**, because of additional measurable coupling constants. I took a few liberties in the *J* assignments for H₁₃ and H₁₄--I think the left-hand peak label for H₁₄ is a bit off, and the doublet for H₁₃ isn't labeled, but the coupling constants are clear from H₇ and H₁₁.

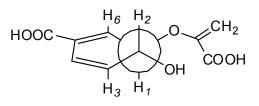
Probably the most distinguishing feature of the charts for **1** and **2** is how similar they are for protons 1-8, and how the reaction changes things for protons 9-12.


b. There is no geminal coupling, because there are no geminal inequivalent protons. But there is long range $({}^{4}J)$ coupling:

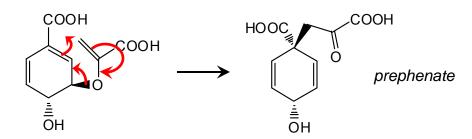
- c. In class, we talked about how integrated intensity is dependent on how far the bulk magnetization **M** for a proton manages to relax back to **M**₀ between RF pulses. If there is incomplete relaxation (because $\tau < 5T_1$), the total magnitude of the measured FID will appear low (because there is still intensity yet to be recorded). The most efficient route of relaxation for nuclei is through-bond spin exchange with nearby protons. H₁, unfortunately, is pretty far away from other protons, and this causes its T_1 to be anomalously high. This is very typical for terminal alkyne protons.
- d. It's difficult to compare the chemical shifts of **1** and **2** in CDCl₃ with the chemical shift of **3** in D₂O--solvent can have an effect on chemical shift. One very big change, though, is that the doublet that used to correspond to H₁₂ is now shifted way downfield, and has become a triplet. The added splitting is caused by coupling between H₁₂ and the closer of the two phosphorus atoms. (This splitting doesn't show up in the ³¹P spectrum, because that spectrum is ¹H-decoupled, but it does show up in the ¹H spectrum.) So I think the reaction worked, and produced **3**.
- e. Nope, there isn't enough splitting for these peaks to correspond to the *n*-butyl group in tetrabutylammonium ion. They could, on the other hand, represent an ethyl group (triplet + quartet) bound to an electron-withdrawing atom, and an uncoupled methyl group (singlet) next to a double bond. These criteria are satisfied by ethyl acetate, a common solvent.
- f. There are two inequivalent phosphorus atoms in **3**, and they couple to one another with J_{POP} = 22 Hz. The four peaks correspond to two doublets.

2. а.

proton	chemical shift (δ, ppm)	multiplet	coupling constants
H1	4.76	dd?	$J_{1,2}$: can't measure $J_{1,6}$: can't measure
H ₂	4.916	dd	J _{2,3} = 2.4 Hz J _{1,2} = 11.7 Hz
H ₃	5.970	dd	J _{2,3} = 2.4 Hz J _{3,4} = 10.0 Hz
H ₄	6.328	dt	J _{3,4} = 10.0 Hz J _{4,6} = 1.7 Hz J _{2,4} = 1.7 Hz
H ₆	6.558	broad	$J_{1,6}$: can't measure $J_{4,6}$: can't measure
H _Z	4.580	d	$J_{E,Z} = 2.9 \text{ Hz}$
H _E	5.211	d	<i>J_{E,Z}</i> = 2.9 Hz



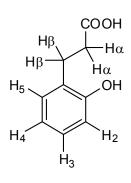
A couple of notes on this listing. The resonance for H_1 overlaps with that of HOD, so it's difficult to tell its multiplicity, but coupling constants from other resonances allow us to say something about it. The resonance for H_6 is a broad singlet; I think there are multiple small coupling constants in that singlet, but they can't be measured directly, so I've inferred them from the coupling partners.


The carboxylic acid and alcohol protons are not observed. In the case of ¹H NMR spectra collected in CDCl₃, these types of protons are sometimes not observed because hydrogen bonding results in broadening. In this case, however, the spectrum was taken in D_2O , where -OH and -COOH protons are *never* observed because of exchange between the protons and the deuterons from solvent. There are a lot more D's than H's in an NMR sample, so this exchange pretty much eliminates the population of alcohol or carboxylate H's.

b. One interesting thing about this molecule is that $J_{2,3}$ is small, and there is no $J_{1,6}$, even though those protons are vicinal. One possible explanation for this is that the dihedral angle between these protons is near 90°, which the Karplus equation says would produce a small or nonexistent *J*. By contrast, $J_{1,2}$ is extremely large, indicating that the dihedral angle between those protons is either very large or very small.

Both of these facts support a predominantly diequatorial conformation for chorismate, where the dihedral angle $\phi_{2,3} \approx 90^{\circ}$, $\phi_{1,6} \approx 90^{\circ}$, and $\phi_{1,2} \approx 180^{\circ}$.

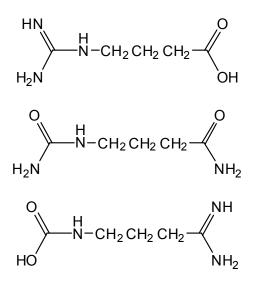
c. Chorismate forms prephenate via a pericyclic reaction:



Prephenate is symmetric, so there should be fewer inequivalent types of protons in it than chorismate.

proton	chemical shift (δ, ppm)	multiplet	coupling constants	Ηα Ηα COOH
H ₁	4.510	broad	$J_{1,2}$: can't measure $J_{1,3}$: can't measure	HOOC H ₃
H ₂	5.921	dd	J _{2,3} = 10.3 Hz J _{1,2} = 3.2 Hz	
H ₃	6.024	dd	J _{1,3} = 1.4 Hz J _{2,3} = 10.3 Hz	H ₂ H ₂
H _α	3.129	S		

3. The aromatic region has four different inequivalent protons, so the molecule can't be the symmetric, *para*-substituted phenol. The aromatic region has two large-*J* doublets and two large-*J* triplets; if large *J*'s correspond to vicinal coupling constants, that must mean a contiguous set of four protons, which can only happen in the *ortho*-substituted phenol.


proton	chemical shift	multiplet	coupling constants
-	(δ, ppm)	-	
	(0, ppm)		
H ₂	6.900	dd	J _{2,3} = 8.0 Hz
2	0.000	44	<i>J</i> _{2,4} = 1.2 Hz
			<i>J</i> _{2,3} = 8.0 Hz
H ₃	7.161	td	<i>J</i> _{3,4} = 7.8 Hz
			J _{3,5} = 1.6 Hz
			<i>J</i> _{2,4} = 1.2 Hz
H_4	6.940	td	<i>J</i> _{3,4} = 7.8 Hz
			J _{4,5} = 7.5 Hz
H_5	7.213	dd	J _{3,5} = 1.6 Hz
115	7.213	uu	J _{4,5} = 7.5 Hz
H _α	2.485	t	<i>J</i> _{α,β} = 7.5 Hz
H _β	2.843	t	$J_{\alpha,\beta}$ = 7.5 Hz

4. The NMR spectrum shows two triplets and a quintet, which means two sets of H's with two neighbors and one set with four. The integrals on the full spectrum are 1:1:1, but it seems likely that they actually would be 2:2:2 (or 3:3:3, but I think 2:2:2 makes more sense). The simplest explanation is a three-carbon, saturated chain:

That explains three out of five carbons, and 6 out of 11 protons. But where are the rest?

Chemical shift says that one of the two ends of the chain is attached to a pretty electronegative atom--O or N--and that the other end is not. We might guess that the end that is more upfield is next to a carbonyl, maybe a carboxylic acid. This is very consistent with the ¹³C peak at δ = 185 ppm. The downfield end must be attached to a nitrogen or oxygen atom, probably nitrogen because oxygen would put δ > 3.5 ppm for the α -CH₂. This in turn would have to be attached to another carbonyl or imine carbon. As long as you drew something in which all the other protons were exchangeable (no aldehydes or methyl ketones), you were right. So, you might have drawn

or something similar.