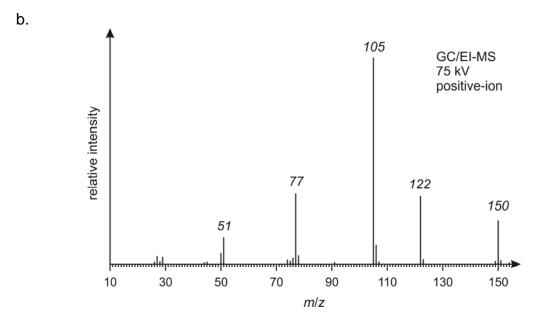

Workshop 5

Simple EI Fragmentation Problems

1. You perform a GC-MS experiment on a reaction you've run many times before, and observe two total-ion peaks at retention times you don't expect. The reaction must be contaminated with something—what is it?

In each case, I'll tell you what the parent ion mass is, and give you the output of an elemental composition calculator so you can make some guesses about the molecular formula. Then, use the mass spectrum to determine the molecular structure of your contaminant. *Hint:* You may want to use two of the summary tables in Pretsch, Table 2.5.7 ("Indicators of the Presence of Heteroatoms") and Table 2.5.9 ("Homologous Mass Series os Indications of Structural Type") to help you use small fragment masses as indicators of which atoms are present in your unknown. For each fragment, try to draw a mechanism that illustrates how the observed fragment is generated by the parent radical cation.


For M = 89,

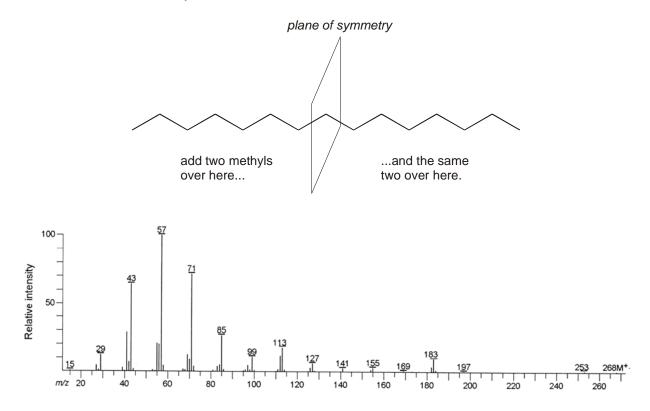
Elemental Composition Calculator v1.0

Calculations for : 89.0000 +/- 0.300 amu monoisotopic mass

С	12.0000	3	10
Н	1.0078	6	12
Ν	14.0030	0	4

0 S	15.9949 31.9720				0 4 0 1		
С	Н	Ν	0	S	mass	diff	ppm
0	11 11 9 9	3 1 2 0	0 1 1 2	0 0 0 0	89.0952 89.0840 89.0714 89.0602	-0.0952 -0.0840 -0.0714 -0.0602	-1070.7 -944.5 -803.2 -677.0
3	7	1	2	0	89.0476	-0.0476	-535.6
4	9	0	0	1	89.0424	-0.0424	-477.4
3	7	1	0	1	89.0299	-0.0299	-336.1

For M = 150,


Elemental Composition Calculator v1.0

Calculations for : 150.0000 +/- 0.500 amu monoisotopic mass

C H N O S	12.0000 1.0078 14.0030 15.9949 31.9720			6 10 0 0	12 24 4 2				
С	Н	N	0	S		mass	di	Lff	mqq
11 10 9 8 7 7	16 14 12	0 1 2 3 3 4	0 0 0 0 0	0 0 0 0 0	150 150 150 150).1408).1282).1156).1031).1970).0905	-0.1 -0.1 -0.1 -0.1 -0.1 -0.1	L282 L156 L031 L970	-939.0 -855.1 -771.3 -687.4 -1313.4 -603.6

С	Η	Ν	0	S	mass diff		ppm
C 10 9 8 7 6 9 8 7 6	H 22 14 12 24 10 22 20 10 22 20 18	N 4 0 1 2 2 3 0 0 1 2	0 1 1 1 1 1 2 2 2 2	S 0 0 0 0 0 0 0 0 0 0 0	mass 150.1844 150.0918 150.1857 150.0793 150.1732 150.1606 150.0680 150.1619 150.1494 150.1368	diff -0.1844 -0.0918 -0.1857 -0.0793 -0.1732 -0.1606 -0.0680 -0.1619 -0.1494 -0.1368	ppm -1229.6 -696.4 -612.5 -1238.5 -528.7 -1154.7 -1070.9 -453.8 -1079.8 -996.0 -912.1
7 6 9 8 7 6 7 6 6 6 6	18 16 14 10 22 20 18 18 16 14 14	0 1 0 1 2 0 1 0 0	3 4 0 0 0 1 1 2 0	0 0 1 1 1 1 1 1 2	150.1255 150.1130 150.0892 150.0503 150.1442 150.1316 150.1190 150.1078 150.0952 150.0714 150.0536	-0.1255 -0.1130 -0.0892 -0.0503 -0.1442 -0.1316 -0.1190 -0.1078 -0.0952 -0.0714 -0.0536	-837.2 -753.4 -594.7 -335.4 -961.4 -877.6 -793.7 -718.8 -635.0 -476.3 -357.9

3. NMR tells you that an alkane (petroleum) extract has two-fold symmetry, and that the molecule has six methyl groups. Based on the EI mass spectrum of your alkane below, what is a likely structure for the molecule?

