Workshop 6 Solutions

MS Analysis with Even-Electron lons

1. a. FAB-MS is a (relatively) soft ionization technique that generates even-electron ions—no radical cations, just protonated cations.

A mass of 267 means the alkyl portion of the molecule has molecular formula $-C_{19}H_{39}$. The only way that we could get a m/z = 60 cation fragment from this molecule is either if the right-hand alkyl fragment broke into ionic pieces—highly unlikely—or if the left-hand four-membered ring broke into pieces. So let's break the ring into pieces.

(I've drawn these fragmentations as concerted retro-[2+2] cycloreversions, but the Woodward-Hoffmann rules for these kinds of reactions says that kind of reaction is thermally forbidden; it probably happens stepwise, with the C-N bond breaking first.)

b) The mechanism drawn in the question would be a way of getting rid of alkane pieces from the m/z = 296 cation. For example, to eliminate a methane molecule,

The CID-MS shows that the 296 fragment can lose methane, ethane, propane, butane, pentane, and hexane, but not heptane. Why not heptane? It must be because the positioning of the R group won't let a C_7 alkane be ejected:

If R were equal to H, the neutral fragment on the right would be heptane. So R must not be H; it must be whatever is needed for the next highest mass. That's octane, so R must be a methyl group. That means the structure of penazetidine is

2. a. We can think of the target complex, $[2\mathbf{A}\cdot 3\mathbf{B}\cdot 6(\mathbf{Cu}^+)]^{6+}\cdot 6(\mathbf{BF_4}^-)$, as having one big hexacation and six individual counteranions. The hexacation has mass 2(690) + 3(338) + 6(63.5) = 2775, and m/z = 462.5. This is clearly not represented in our mass spectra. However, if we imagine that $\mathbf{BF_4}^-$ anions (with mass 87 each) are associated with the hexacation,

<u>formula</u>	total mass	<u>Z</u>	<u>m/z</u>
[2 A ·3 B ·6(Cu ⁺)](BF ₄ ⁻)	2862	5+	572.4
[2 A ·3 B ·6(Cu ⁺)]•2(BF ₄ ⁻)	2949	4+	737.3
[2 A ·3 B ·6(Cu ⁺)]•3(BF ₄ ⁻)	3036	3+	1012.0
[2 A ·3 B ·6(Cu ⁺)]•4(BF ₄ ⁻)	3123	2+	1561.5
$[2\mathbf{A}\cdot 3\mathbf{B}\cdot 6(\mathbf{Cu}^+)]\bullet 5(\mathbf{BF}_4)$	3210	1+	3210

The first three ions in this list are present in spectrum (a).

b. For the ion at m/z = 573.0 to fragment to 799.3 (an *increase* in m/z), the parent ion needs to not only lose mass, but also lose positive charge. The only way this could happen is if the complex lost at least one copper ion.

<u>cartoon</u>	total mass	<u>Z</u>	<u>m/z</u>
BF4-	2862	5+	572.4
[2 A• 3 B• 6Cu] ⁶⁺			
BF ₄ ⁻ [2 A •2 B •6Cu] ⁶⁺	2524	5+	504.8
[2 A •2 B •5Cu] ⁵⁺	2460	4+	615

[2**A•**2**B•**4Cu]⁴⁺

And there it is, our m/z = 799 fragment.

c. Spectrum (b) contains too much **A**. To figure this out, I just started combining **A** and Cu ions to see what I could make, trying to make sure that Cu is coordinatively saturated (has two bidentate ligands) and that the ligand arrangement is tetrahedral:

<u>cartoon</u>	total mass	<u>Z</u>	<u>m/z</u>
	1445	1+	1445
[2 A •Cu] ⁺			

That's it actually. Then I started doing the same thing with **B** and Cu ions:

<u>cartoon</u>	total mass	<u>Z</u>	<u>m/z</u>
[2 B •Cu]⁺	740	1+	740
[3 B •2Cu] ²⁺	1141	2+	571
[4 B •4Cu] ⁴⁺	1606	4+	401.5

This last cation could be it, although I think it's important to note that any cation with a 1:1 ratio of Cu^+ ions and ligands **B** would give the same m/z. However, a 1:1 complex of Cu:**B** wouldn't be coordinatively unsaturated, and I'm not sure that a 2:2 or 3:3 complex could be formed, given the geometric constraints of the ligand and complexes.