Workshop 6 Solutions

MS Analysis with Even-Electron Ions

1. a. FAB-MS is a (relatively) soft ionization technique that generates even-electron ions-no radical cations, just protonated cations.

A mass of 267 means the alkyl portion of the molecule has molecular formula $-\mathrm{C}_{19} \mathrm{H}_{39}$. The only way that we could get a $\mathrm{m} / \mathrm{z}=60$ cation fragment from this molecule is either if the right-hand alkyl fragment broke into ionic pieces-highly unlikely-or if the left-hand four-membered ring broke into pieces. So let's break the ring into pieces.

(I've drawn these fragmentations as concerted retro-[2+2] cycloreversions, but the Woodward-Hoffmann rules for these kinds of reactions says that kind of reaction is thermally forbidden; it probably happens stepwise, with the $\mathrm{C}-\mathrm{N}$ bond breaking first.)
b) The mechanism drawn in the question would be a way of getting rid of alkane pieces from the $m / z=296$ cation. For example, to eliminate a methane molecule,

The CID-MS shows that the 296 fragment can lose methane, ethane, propane, butane, pentane, and hexane, but not heptane. Why not heptane? It must be because the positioning of the R group won't let a C_{7} alkane be ejected:

If R were equal to H , the neutral fragment on the right would be heptane. So R must not be H ; it must be whatever is needed for the next highest mass. That's octane, so R must be a methyl group. That means the structure of penazetidine is

2. a. We can think of the target complex, $\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right]^{6+} \cdot 6\left(\mathrm{BF}_{4}{ }^{-}\right)$, as having one big hexacation and six individual counteranions. The hexacation has mass 2(690) + $3(338)+6(63.5)=2775$, and $m / z=462.5$. This is clearly not represented in our mass spectra. However, if we imagine that $\mathrm{BF}_{4}{ }^{-}$anions (with mass 87 each) are associated with the hexacation,

formula	total mass	\underline{z}	$\frac{\mathrm{~m} / \mathrm{z}}{(2)}$
$\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right]\left(\mathrm{BF}_{4}^{-}\right)$	2862	$5+$	572.4
$\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right] \cdot 2\left(\mathrm{BF}_{4}^{-}\right)$	2949	$4+$	737.3
$\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right] \cdot 3\left(\mathrm{BF}_{4}^{-}\right)$	3036	$3+$	1012.0
$\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right] \cdot 4\left(\mathrm{BF}_{4}^{-}\right)$	3123	$2+$	1561.5
$\left[2 \mathrm{~A} \cdot 3 \mathrm{~B} \cdot 6\left(\mathrm{Cu}^{+}\right)\right] \cdot 5\left(\mathrm{BF}_{4}^{-}\right)$	3210	$1+$	3210

The first three ions in this list are present in spectrum (a).
b. For the ion at $m / z=573.0$ to fragment to 799.3 (an *increase* in m / z), the parent ion needs to not only lose mass, but also lose positive charge. The only way this could happen is if the complex lost at least one copper ion.

$\mathrm{BF}_{4}{ }^{-}$
2460
4+
615
$[2 A \cdot 2 B \cdot 5 C u]^{5+}$

And there it is, our $m / z=799$ fragment.
c. Spectrum (b) contains too much A. To figure this out, I just started combining A and Cu ions to see what I could make, trying to make sure that Cu is coordinatively saturated (has two bidentate ligands) and that the ligand arrangement is tetrahedral:

| cartoon | $\underline{\text { total mass }}$ | $\underline{\mathrm{m} / \mathrm{z}}$ |
| :---: | :---: | :---: | :---: |
| $[2 \mathrm{~A} \cdot \mathrm{Cu}]^{+}$ | | |

That's it actually. Then I started doing the same thing with B and Cu ions:

cartoon	total mass	\underline{z}	$\underline{m} / \mathrm{z}$
	740	1+	740
	1141	2+	571
$[4 \mathrm{~B} \cdot 4 \mathrm{Cu}]^{4+}$	1606	4+	401.5

This last cation could be it, although I think it's important to note that any cation with a $1: 1$ ratio of Cu^{+}ions and ligands \mathbf{B} would give the same m / z. However, a 1:1 complex of $\mathrm{Cu}: \mathbf{B}$ wouldn't be coordinatively unsaturated, and I'm not sure that a $2: 2$ or $3: 3$ complex could be formed, given the geometric constraints of the ligand and complexes.

