Title- A porous, electrically conductive hexa-zirconium(IV) metal–organic framework

Abstract-
Engendering electrical conductivity in high-porosity metal–organic frameworks (MOFs) promises to unlock the full potential of MOFs for electrical energy storage, electrocatalysis, or integration of MOFs with conventional electronic materials. Here we report that a porous zirconium-node-containing MOF, NU-901, can be rendered electronically conductive by physically encapsulating C_{60}, an excellent electron acceptor, within a fraction (ca. 60%) of the diamond-shaped cavities of the MOF. The cavities are defined by node-connected tetra-phenyl-carboxylated pyrene linkers, i.e. species that are excellent electron donors. The bulk electrical conductivity of the MOF is shown to increase from immeasurably low to 10^{-3} S cm^{-1}, following fullerene incorporation. The observed conductivity originates from electron donor–acceptor interactions, i.e. charge-transfer interactions – a conclusion that is supported by density functional theory calculations and by the observation of a charge-transfer-derived band in the electronic absorption spectrum of the hybrid material. Notably, the conductive version of the MOF retains substantial nanoscale porosity and continues to display a sizable internal surface area, suggesting potential future applications that capitalize on the ability of the material to sorb molecular species.