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ABSTRACT: We present a new approach to calculating potential energy

surfaces for photochemical reactions by combining self-consistent-field
calculations for single-reference ground and excited states with symmetry-
corrected spin-flip Tamm—Dancoff approximation calculations for multi-
reference electronic states. The method is illustrated by an application with

the M05-2X exchange-correlation functional to cis—trans isomerization of the
penta-2,4-dieniminium cation, which is a model (with three conjugated

double bonds) of the protonated Schiff base of retinal. We find good « s «
agreement with multireference configuration interaction-plus-quadruples ¢
(MRCISD+Q) wave function calculations along three key paths in the
strong-interaction region of the ground and first excited singlet states.

SECTION: Spectroscopy, Photochemistry, and Excited States

D ensity functional theory (DFT) has made great strides in
treating ground-electronic-state chemistry,"> but an
unconquered frontier is excited-electronic-state chemistry,
which we will simply call photochemistry, where most DFT
studies are carried out by adiabatic linear-response time-
dependent density functional theory,> here abbreviated as
TDDFT. TDDFT has a number of well-known deficiencies for
excited-state calculations,”” and it has been stated that® “Even if
the overall accuracy of these methods has improved much since
the early times and its black-box applicability has slightly
increased, it is still questionable whether they will ever have
high accuracy and, especially, predictability, as required in
photochemistry.” Wave function theory (WFT) in principle is
systematically improvable, but the cost scales rapidly with
system size, so similar accuracy questions remain for levels of
WET that are affordable for modeling the dynamics of large and
complex systems. Thus there is great interest in improving and
validating both kinds of electronic structure theory.

The isomerization paths of the PSB3 (penta-2,4-dieniminium
cation®) model of the retinal protonated Schiff base
chromophore of visual pigments is particularly challenging for
DFT because, although it is a small enough system for
benchmarks to be obtained, it includes more than one of the
kinds of electronic structure that are very difficult for DFT to
model. When the potential energy surface is computed at the
complete-active-space self-consistent-field (CASSCF) level of
multireference WFT, there are two kinds of low-energy thermal
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paths for converting cis-PSB3 to trans-PSB3: one reaction path
passing through a diradical transition state (TSp), called the
DIR path, has predominantly covalent or diradical character,
and the other passing through a transition state (TScr), called
the CT path, which has a predominant charge-transfer
character.” These paths are separated by a conical intersection
(CI) between the ground state (S,) and the first singly excited
state (S;) and thereby provide an illustration of a common
motif® of saddle points on the shoulder of a CL

In the simplest terms, we can attribute the difficulty with
modeling diradicals to the near-degeneracy (nondynamical or
static) electron correlation in diradical states; this is hard to
treat with Hartree—Fock exchange because Hartree—Fock
exchange brings in static correlation error due to its origin in
the exchange of a single Slater determinant. By contrast, charge-
transfer states usually require high Hartree—Fock exchange to
minimize self-interaction error. Previous work has shown that
density functionals with percentages X of Hartree—Fock
exchange between 25 and 60 represent the best compromise
of these competing factors,” but we ask: Can one find an
approximate density functional that treats these paths in a
balanced fashion?
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From another point of view, the interaction of the S, and S,
states of the retinal chromophore exposes a different difficulty
of DFT, namely, the challenge of treating ground and excited
states on a consistent footing. DFT was originally a ground-
state theory, but it can find excitation energies by locating the
poles of the response of the ground state to a periodic electric-
field perturbation. This yields TDDFT,> but TDDFT is
unstable near state intersections.* This instability can be
alleviated but not completely removed* by making the Tamm—
Dancoff approximation'®"" (TDA), but neither TDDFT nor
TDDFT-TDA based on the ground-state Kohn—Sham (KS)
self-consistent-field (SCF) reference function can represent the
partial doubly excited character of the open-shell excited state
with diradical character. Some progress can be made by using
spin-flip (SF) TDDFT-TDA to model the diradical state as a
spin flip from the T state.'> All these approaches, though, can
suffer potential inaccuracies due to representing electronic
states via the linear response of SCF states rather than as
variationally optimized SCF states in their own right.

Recent work has used multireference WFT to include both
near-degeneracy correlation energy and dynamic correlation in
the treatment of the S, and S, states of PSB3 along the
minimum energy DIR (MEPDIR) reaction path, the minimum
energy CT (MEPCT) reaction path, and a bond length
alternation path, called the BLA path, from one saddle point to
the other through the CL’ These paths are illustrated in
Scheme 1, where the bottom portion of the scheme
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corresponds to CASSCF wave functions with CT character,
and the top portion corresponds to CASSCF wave functions
with DIR character. In PSB3, the dynamic correlation energy
introduced by the multireference configuration interaction-
plus-quadruples (MRCISD+Q) method shifts the CI position
so much toward the top of the scheme (with respect to the
original CASSCF position) that the DIR path does not have a
diradical character anymore but rather has charge transfer
character, because along the BLA path in Scheme 1 it is located
at a position slightly below the intersection. As a consequence,
both CT and DIR paths (that were computed” at the CASSCF
level) span regions in which the MRCISD+Q_ground-state
wave functions has closed-shell 7> character.

The paths in Scheme 1 present a challenge; can one model
the energies along these paths in the vicinity of the conical
intersection in a reasonable way with DFT? This question is
particularly interesting in light of previous work'® that showed
that the popular equations-of-motion coupled cluster method
with single and double excitations (EOM-CCSD, a single-
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reference WFT method that is already much more expensive
than DFT) cannot describe these energies well, and one must
use even more expensive WFT methods such as MRCISD+Q_
(which is the most accurate level considered in either ref 7 or
ref 13) or spin-flip EOM-CCSD with a perturbative account of
triple excitations derived from the diagonal of the similarity
transformed Hamiltonian (EOM-SF-CCSD(dT)). We will
show here, by comparison to MRCISD+Q_results, that one
can obtain a consistent representation of Sy and S; by using
single-reference density functional methods, in particular, a
high-exchange density functional (M05-2X"* with the percent-
age X of Hartree—Fock exchange equal to 56) along with a
treatment that combines the SCF treatments of the single-
reference ground and excited states and multireference singlet
states with a collinear SF-TDDFT-TDA treatment of the
singlet—triplet splitting. (In the Supporting Information, we
show that we can also get qualitatively correct results with three
other high-exchange density functionals, namely, Mo06-2X"°
with X = 54, M08-HX"® with X = 52.23, and M08-SO"® with X
= 56.79. We show MO0S-2X in the article itself because it
happens to be slightly more accurate in the present case. The
results are less accurate with M11, which has X equal to only
42.8 for small interelectronic separation.) For the BLA path, we
will also compare to two single-reference WFT methods,
equations-of-motion coupled cluster singles and doubles
(EOM-CCSD)" (also considered previously13 as mentioned
above), and symmetry adapted cluster/configuration inter-
action (SAC—CI).18

B THEORETICAL METHODS

All calculations are based on the 6-31G* basis set'® because this
basis set was used”'® for mapping the effect of dynamical
correlation on the potential energy surfaces in previous studies.
Although this basis set is insufficient for quantitative accuracy, it
is adequate for testing the ability of DFT to yield qualitatively
correct potential energy surfaces.

We will use the MRCISD+Q?® wave function calculations of
ref 7 as reference WFT data to test DFT. In brief, these WFT
calculations are based on a two-level treatment. The first level,
denoted CASSCE*' is an equal-weight, two-root, state-
averaged complete active-space SCF wave function for six
electrons in six active 7 orbitals. The second level, denoted
MRCISD+Q, is a multireference configuration interaction with
all single and double excitations out of the CASSCF wave
function treated variationally and with quadruple excitations
approximated by a multireference Davidson correction. The
three paths are found at the CASSCEF level, but all energies in
this Letter are single-point MRCISD+Q_(or, below, DFT,
EOM-CCSD, and SAC-CI) calculations along the CASSCF
paths. For further details of the CASSCF and MRCISD+Q_
calculations, please see ref 7.

For the DFT calculations, we designed a computational
strategy that uses SCF methods for single-reference states
(closed-shell ground states and states well represented by a
high-spin single Slater determinant) with SF TDDFT
calculations in the TDA to obtain energy differences of open-
shell multireference singlets from SCF states. We label the
highest occupied molecular orbital (HOMO) as 7 and the
lowest unoccupied molecular orbital (LUMO) as z*. The
dominant configurations in the states of interest here are 7* and
¥,

The conventional singlet ((8?) = 0) restricted and triplet
((§*) = 2, Mg = +1) unrestricted KS SCF calculations are
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Table 1. The Energies (kcal/mol) of the Ground and First Vertical Excitation Singlet States at cis-PSB3, trans-PSB3, TSy, and
TSpir Structures Relative to That of the cis-PSB3 Ground State As Calculated by Various Methods

method” trans-S, TScr-So TSpr-So
SCF -3.0 45.6 514
SF2
TDA
TDDFT
SAC-CI -2.9 58.7 65.0
EOM-CCSD -3.0 46.6 52.5
MRCISD+Q. -3.1 48.7 54.3

cis-Sy trans-S, TScr-S; TSpr-S1
97.7 97.8 56.2 52.4
110.7 111.6 54.3 50.8
101.9 101.9 54.0 52.7
99.3 98.9 73.0 69.2
102.3 101.9 63.3 59.4
101.4 101.3 59.0 54.9

“The M05-2X functional is used for the SCF, TDDFT, TDA, and SF2 calculations.

performed first. The singlet restricted SCF energy is taken as
the energy of the state dominated by the closed-shell #*
configuration. The Mg = +1 triplet state obtained from the
unrestricted SCF calculation is represented by a Izaz*a) single
Slater determinant. The SF-TDDFT-TDA takes it as a
reference wave function and excites and flips one a spin into
a ff spin to get spin-flipped states with Mg = 0. The target zz*
singlet state is a linear combination of lzax*f) and Izpr*a)
determinants. Due to the spin incompleteness, the SF solutions
are not pure spin eigenfunctions for the zz* singlet state,”* and
this introduces spin contamination with (8%) ~ 1 as a result of a
singlet—triplet mixing. We use Yamaguchi’s approximate spin
projection (AP) formula® to convert the energy of this
unphysical mixed spin-symmetry zz* state (E,;) obtained
from the SF-TDDFT-TDA calculation to the energy of pure
an* singlet state (Eg). The energy of the final open-shell zz*
singlet state is thereby calculated as

_ 2(ET — Emix)
(" = ($Mmie

Er in eq 1 is the energy of the triplet zz* reference state
obtained from the unrestricted SCF calculations, and ($); and
(8%)x are, respectively, expectation values of the triplet z7*
reference state and of the spin mixed zz* state obtained by SF-
TDDFT-TDA calculations. This combined SCF and SF-
TDDFT-TDA method with eq 1 to remove spin contamination
of the zz* singlet state will be denoted as SF2. For comparison,
the energies of the open-shell 7zz* singlet state along the three
paths are also calculated using the conventional TDDFT and
TDDFT-TDA methods (the latter abbreviated as TDA) based
on the ground-state reference function. Along the BLA path,
the two states of interest are also calculated by two high-level
single reference WFT methods: EOM-CCSD and SAC-CI.

The TDDFT-TDA and SF-TDDFT-TDA calculations are
performed using the GAMESS™* program; the TDDFT and
SAC-CI calculations are performed using Gaussian;”® EOM-
CCSD is performed with the Molpro®® package.

Table 1 lists the energies of the S, and vertical S, states at the
cis-PSB3, trans-PSB3, TScr, and TSy equilibrium geometries
relative to the S, energy of cis-PSB3. The energy profile of the
open-shell zz* singlet state along the BLA path, MEPCT path,
and MEPDIR path calculated by the newly presented SF2 and
by the conventional TDDFT and TDA methods with the M05-
2X functional are shown respectively in Figures la, 2 and 3,
compared to the reference MRCISD+Q_results. The dashed
curves in those figures are for the state with 7* as the dominant
configuration, and they correspond to the restricted M05-2X
SCF calculation (labeled as SCF in the figures) and to the
MRCISD+Q_calculation. The energy profiles of the two states

Eg = Ep
(1)
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of interest along the BLA path obtained by EOM-CCSD and
SAC-CI methods are shown in Figure 1b.

The data in Table 1 indicate that all the single-reference
methods (EOM-CCSD, SAC-CI, and the restricted M0S5-2X
SCF calculation) give an accurate ground-state relative energy
of equilibrium structures trans-PSB3 and cis-PSB3 with errors
less than or equal to 0.2 kcal/mol as compared to the reference
MRCISD+Q_ results. Single-reference methods also do
reasonably well (errors less than or equal to 3.5 kcal/mol)
for the excited-state calculations of the cis and trans equilibrium
structures, except TDA, which overestimates the energy of the
S, state by 9.3 kcal/mol. At the TScr and TSp geometries,
where static correlation energy is not negligible, the M05-2X
SCF and EOM-CCSD methods predict the energy of the S,
state, which is closed-shell 7” state, reasonably well with errors
of 2.1-2.9 kecal/mol, while SAC-CI gives worse results with
errors of 10.0 to 10.7 kcal/mol; for the more difficult open-shell
S, states, only the SF2 method agrees reasonably with the
MRCISD+Q _results.

The good performance of the SF2 method is further
validated by Figure la. Along the BLA path, the energy profile
of the open-shell zz* state obtained by the SF2 method
intersects with the potential curve of the closed-shell 7% state
obtained by restricted SCF calculations at a position similar to
that obtained by the MRCISD+Q _method. As shown in Figure
la, the conventional TDDFT method fails to predict the
energies of the open-shell zz* states around the region of the
conical intersection due to the triplet instability problem
(symmetry breaking in the ground state*). The TDA method
gives a much improved energy curve of the z7* state compared
to TDDFT: it yields a position of the crossing with the 7* state
that is a little early as compared to the MRCISD+Q _reference
and the SF2 method, as a result of underestimating the energies
of the zz* state along the BLA path.

Figure 1b shows that the EOM-CCSD and SAC-CI single-
reference WFT methods both fail to predict a crossing of the
two states of interest along the BLA path. The EOM-CCSD
method can predict the energy of the closed-shell 7* state fairly
well, but it largely overestimates the energy of the zmz* state.
The SAC-CI method gives even worse results, and it seriously
overestimates the energies for both states of interest. Therefore,
only the DFT methods are compared for the other two paths:
MEPCT and MEPDIR.

Figures 2 and 3 show that, as a result of underestimating the
energy of the mz* state in the vicinity of the saddle points
(TScr and TSpp), both TDDFT and TDA methods give
wrong shapes and energetics for energy curve of the 7z* state
along MEPCT and MEPDIR paths, as compared to MRCISD
+Q results. However, combining the SCF calculations for the 7*
state and SF2 calculations for the 7zz™* state, one gets
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Figure 1. (a) The energy profile (solid lines) of the open-shell zz*
singlet state along the BLA path as calculated by the newly suggested
SF2 method and by conventional TDDFT and TDA methods with the
MO05-2X functional compared to the reference MRCISD+Q_results.
The energies for the state with 7> as the dominant configuration as
calculated by the restricted M0S-2X SCF (labeled as SCF) and
MRCISD+Q_methods are shown using dashed lines for comparison
and for showing the positions of conical intersections obtained by
various methods. (b) The energy profiles of zz* singlet state and 7*
state calculated by EOM-CCSD and SAC-CI (three singlet excited
states are calculated at the same time). Energy is relative to the cis-
PSB3 ground state.

qualitatively correct energy profiles of the two states using the
MO05-2X functional.

The present results indicate that in the vicinity of the conical
intersection, although the 7* state involves charge transfer as
compared to the equilibrium ground state, its closed-shell
character allows it to be predicted well by a restricted SCF
calculation with the M0S5-2X functional. Furthermore, it can be
described reasonably well by any of the single-reference
methods that include enough dynamic correlation. The open-
shell zz* state has diradical character in the region we
investigate, and it has significant static correlation. That is why
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Figure 2. The energy profile (solid lines) of the open-shell zz* singlet
state along the MEPCT path calculated by the new SF2 method and
by the conventional TDDFT and TDA methods with the M0S-2X
functional compared to the reference MRCISD+Q results. The energy
profile of the state with 7 as the dominant configuration, as calculated
both by restricted M05-2X SCF (labeled as SCF) and by MRCISD+Q
methods, is shown using dashed lines for comparison. All energies are
relative to the cis-PSB3 ground state.
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Figure 3. The energy profile (solid lines) of the open-shell zz* singlet
state along the MEPDIR path calculated by the new SF2 method and
by the conventional TDDFT and TDA methods with the M0S-2X
functional compared to the reference MRCISD+Q results. The energy
profile of the state with 7% as the dominant configuration, as calculated
both by restricted M05-2X SCF (labeled as SCF) and by MRCISD+Q
methods, is shown using dashed lines for comparison. All energies are
relative to the cis-PSB3 ground state.

the single-reference WFT methods, EOM-CCSD and SAC-CI],
fail. Density functional exchange does not bring in static
correlation error to the extent that Hartree—Fock reference
functions, as used in EOM-CCSD and SAC-CI, do; however,
the triplet instability as a result of the mixing of the two states
of interest in the strong interaction region makes the
conventional TDDFT method unstable for predicting the
energy of the zzx* state. TDA predicts an improved energy
curve for the mz* state along the BLA path as compared to
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TDDFEFT, but it still cannot represent the partial doubly excited
character of the diradical, it underestimates the energy of the
diradical state near saddle points, and it leads to the wrong
shape of the energy profile along the MEPCT and MEPDIR
paths. The SE-TDDFT-TDA method avoids the instability, and
at the same time it includes the double excitation for the
diradical state; unfortunately, though, it introduces serious spin
contamination due to spin incompleteness. The new SF2
method successfully removes spin mixing in the SF-TDDFT-
TDA calculations to get a pure 7z* state, and the SF2 method
with the M0S-2X functional treats the 7% state better than the
other single-reference methods. At the same time, it is also
applicable for the excited state calculations in the equilibrium
structure region. Just as we showed above, the combination of
an SCF calculation for 7% state and an SF2 calculation for zz*
state yields qualitatively good energy profiles along all three
paths (BLA, MEPCT, and MEPDIR).

The present SE-TDDFT-TDA calculations are based on a
collinear approximation, and only the Hartree—Fock exchange
part of exchange-correlation (XC) kernel is responsible for the
spin-flip transitions.”” Consequently, high Hartree—Fock
exchange, for example X larger than ~50, seems to be required
for a reasonable estimation of spin-flip excitation energies.
Therefore the popular B3LYP functional with X = 20 is not
suitable for the suggested SF2 method, whereas M05-2X, M06-
2X, M08-HX, and MO8-SO, which are all broadly accurate
high-X functionals, all give reasonable potential energy surfaces
for the PSB3 model with the SF2 method. In addition, the need
for high-X of this system is probably in part because of the
charge-transfer character.

Another point we want to emphasize is that the combination
of SCF for a closed-shell 7* state and SF2 for an open-shell zz*
state does much better than the CASSCF method, which only
considers nondynamical correlation. In the present isomer-
ization case, the CASSCF even gives wrong energy profiles
because it ignores the important dynamic correlations as ref 7
shows. Due to the computational cost, many studies have been
performed using the CASSCF method to investigate multi-
reference electronically nonadiabatic systems; however, dynam-
ic correlation could change the final conclusions. The method
suggested here of combining SCF and SF2 calculations
employing DFT is less expensive and easier than CASSCF
(in general, single-reference calculations are much easier than
multireference ones), it includes both the dynamic and static
correlations, and it yields results of comparable accuracy to the
very expensive MRCISD+Q_method.

A combined DFT method for calculating potential energy
surfaces of photochemical systems is suggested, in particular to
perform restricted SCF KS calculations for the single-reference
ground state, and to do spin-flip TDA calculations in a collinear
approximation for multireference singlet excited states with a
single-reference triplet KS calculation as reference. Yamaguchi’s
formula is used to remove the spin contamination due to spin
incompleteness in the spin-flip calculations. This combined
method, using the high-X functional M0S5-2X (alternatively
MO06-2X, M08-HX, or M08-SO as shown in the Supporting
Information) yields potential energy profiles comparable with
MRCISD+Q _for the retinal chromophore model PSB3 along
three key paths (BLA, MEPCT, and MEPDIR) in the vicinity
of a conical intersection. In this system, the two electronic
states of interest have quite different correlation energies such
that both dynamic and nondynamical (static) correlation effects
have to be considered. The new combined method, called SF2,
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treats the two states on a consistent footing, and does much
better than the conventional TDDFT or TDDFT-TDA
methods or even than the much more expensive SAC-CI and
EOM-CCSD single-reference methods or the multireference
CASSCF method. We believe that this may provide a route
toward using DFT more constructively for photochemical
applications like the one considered here.

B ASSOCIATED CONTENT
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Additional figures showing results for the M06-2X, M08-HX,
and MO08-SO density functional and EOM-SF-CCSD(dT)/
ROHF methods. This material is available free of charge via the
Internet at http://pubs.acs.org.
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