

Department of Chemistry

4 p.m. Monday, October 21, 2013 • 331 Smith Hall

Professor Weston Borden Department of Chemistry

University of North Texas

Why Does Cyclobutane-1,2,3,4-Tetraone Have a Triplet Ground State?

Research interests: electronic structure calculations to understand and predict the reactions of organic and organometallic compounds, including the contributions of quantum mechanical tunneling to the reaction rates.

Website: http://chemistry.unt.edu/people-node/weston-t-bordenl

Abstract

Xiaoguang Bao,^{a,b} Xin Zhou,^a Charity Flener,^a Amruth Venkatraman,^a Sebastian Kozuch,^a David A. Hrovat,^a Rolf Gleiter,^c Roald Hoffmann,^d Xue-Bin Wang,^e and Weston Thatcher Borden^a

As predicted,¹ cyclobutane-1,2,3,4-tetraone, (CO)₄, has been found by negative ion photo-electron spectroscopy (NIPES) to have a triplet ground state.² Why does this apparently unexceptional organic molecule have a ground state with two unpaired electrons? Which, if any, other members of the (CO)n series are calculated to have a triplet ground state? Is (CS), or (SiO), predicted to have a triplet ground state? What are the factors that control the spin of the ground state of these molecules? All of these questions have been addressed by a combination of qualitative MO theory and quantitative electronic structure calculations;^{3,4} and the predictions, made by the calculations, have been tested by NIPES.^{5,6}

- ^a Department of Chemistry and the Center for Advanced, Scientific Computing and Modeling, University of North Texas, 1155 Union Circle, #305070, Denton, Texas 76203-5070
- ^b College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
- ^o Organisch-Chemisches Institut der Universität Heidelberg Im Neuenheimer, Feld 270, D-69120 Heidelberg, Germany
- ^d Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory, Ithaca, New York 14853-1301, United States
- ^e Chemical & Materials Sciences Division, Pacific Northwest National Laboratory, P. O. Box 999, MS K8-88, Richland, WA 99352
- ¹ X. Zhou, D. A. Hrovat, W. T. Borden, J. Phys. Chem. A 2010, 114, 1304.
- ²J.-C. Guo, G.-L. Hou, S. D. Li, X.-B. Wang, J. Phys. Chem. Lett. 2012. 3, 304.
- ³ X. Bao, X. Zhou, C. F. Lovitt, A. Venkatraman, D. A. Hrovat, R. Gleiter, R. Hoffmann, and W. T. Borden, J. Am. Chem. Soc. 2012, 134, 10259.
- ⁴ X. Bao, D. A. Hrovat, and W. T. Borden, *Chem., Eur. J.*, **2013**, *19*, 5687.
- ⁵ X. Bao, D. A. Hrovat, W. T., Borden, and X.-B. Wang, J. Am. Chem. Soc. 2013, 135, 4291.
- ⁶ X. Bao, D. A. Hrovat, W. T., Borden, and X.-B. Wang, J. Phys. Chem A, in press.

Host: Laura Gagliardi