

Department of Chemistry

9:45 a.m. Thursday, January 30, 2014 · 331 Smith Hall

William D. Jones

Professor Department of Chemistry University of Rochester

Why Do Weaker Metal-Carbon Bonds Lead to More Stable Complexes? What's Going On?

Research interests include organometallic research in strong C-X bond cleavage, catalysis, model studies, mechanisms, kinetics, thermodynamics, and synthetic applications.

Website: http://www.chem.rochester.edu/faculty/faculty.php?name=jones

Abstract

A series of kinetic measurements of Tp'Rh(CNneopentyl)(R)H complexes (Tp' = tris-(3,5-dimethylpyrazolyl)borate) where R = alkyl, aryl, vinyl, benzyl, allyl, and CH₂X (X= CN, C———CMe, CH₂C=OCH₃, and others) have been used to determine relative metal-carbon bond energies in these compounds. A thermodynamic analysis allows for the extraction of an increase in bond energy of ~7 kcal/mol for R groups in which the corresponding anion is resonance stabilized. This increase in bond strength is associated with an increase in the ionic contribution to metal-carbon bonding. Trends will be analyzed in terms of inductive vs. resonance contributions to the bonding. These studies have been extended to complexes with other spectator ligands in place of isocyanide, including PMe₃ and P(OMe)₃.