Inorganometallic Catalyst Design Center

research areas
research areas publications opportunities


This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702.

Cover design by ICDC for Journal of the American Chemical Society


Methane to Methanol with Cu-Oxo Clusters Supported on a Metal-Organic Framework

The selective oxidation of methane to methanol is the “holy grail” reaction in natural gas upgrade. Very recently, a highly collaborative experimental and theoretical work performed at ICDC (Farha, Hupp, Cramer, Gagliardi, Camaioni, Lercher) reports the synthesis and characterization of Cu-oxo clusters deposited on the nodes of the metal–organic framework NU-1000. This new material was shown to catalyze the conversion of methane to methanol with a carbon selectivity of 45-60%. This study presents a promising first-generation of MOF-based catalysts for selective methane functionalization.
Read the publication
See the cover


  1. D. Yang and B.C. Gates, “Heterogeneous catalysis: Uniformity begets selectivity,” Nature Materials, 2017, Web Publication June 12.
    DOI: 10.1038/nmat4924

  2. M. Yabushita, P. Li, T. Islamoglu, H. Kobayashi, A. Fukuoka, O.K. Farha, and A. Katz, “Selective Metal–Organic Framework Catalysis of Glucose to 5-Hydroxymethylfurfural Using Phosphate-Modified NU-1000,” Ind. Eng. Chem. Res., 2017, 56 (25) 7141–7148.
    DOI: 10.1021/acs.iecr.7b01164

  3. P. Liao, R.B. Getman, and R.Q. Snurr, “Optimizing Open Iron Sites in Metal–Organic Frameworks for Ethane Oxidation: A First-Principles Study,” Appl. Mat. Interfaces, 2017, Web Publication April 10.
    DOI: 10.1021/acsami.7b02195

  4. A.E. Platero-Prats, Z. Li, L. C. Gallington, A.W. Peters, J.T. Hupp, O.K. Farha, and K.W. Chapman, “Addressing the characterisation challenge to understand catalysis in MOFs: the case of nanoscale Cu supported in NU-1000,” Faraday Discussions, 2017, Web Publication April 3.
    DOI: 10.1039/C7FD00110J

  5. M. Yabushita, P. Li, K.A. Durkin, H. Kobayashi, A. Fukuoka, O.K. Farha, and A. Katz, “Insights into Supramolecular Sites Responsible for Complete Separation of Biomass-Derived Phenolics and Glucose in Metal–Organic Framework NU-1000,” Langmuir, 2017, 33 (17), 4129–4137.
    DOI: 10.1021/acs.langmuir.7b00045

  6. D.R. Pahls, M.A. Ortuño, P.H. Winegar, C.J. Cramer, and L. Gagliardi, “Computational Screening of Bimetal-Functionalized Zr6O8 MOF Nodes for Methane C–H Bond Activation,” Inorganic Chemistry, 2017, Web Publication July 25, 2017.
    DOI: 10.1021/acs.inorgchem.7b01334

  7. A.E. Platero-Prats, A.B. League, V. Bernales, J. Ye, L.C. Gallington, A. Vjunov, N.M. Schweitzer, Z. Li, J. Zheng, B.L. Mehdi, A.J. Stevens, A. Dohnalkova, M. Balasubramanian, O.K. Farha, J.T. Hupp, N.D. Browning, J.L. Fulton, D.M. Camaioni, J.A. Lercher, D.G. Truhlar, L. Gagliardi, C.J. Cramer, and K.W. Chapman, “Bridging Zirconia Nodes within a Metal–Organic Framework via Catalytic Ni-Hydroxo Clusters to Form Heterobimetallic Nanowires,” JACS, 2017, 139 (30), 10410–10418.
    DOI: 10.1021/jacs.7b04997

  8. T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M.A. Ortuño, D.R. Pahls, J.L. Fulton, D.M. Camaioni, Z. Li, D. Ray, B.L. Mehdi, N.D. Browning, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, and J.A. Lercher, “Methane Oxidation to Methanol Catalyzed by Cu-Oxo Clusters Stabilized in NU-1000 Metal–Organic Framework,” JACS, 2017, 139 (30), 10294–10301.
    DOI: 10.1021/jacs.7b02936

  9. S.P. Desai, C.D. Malonzo, T. Webber, J. Duan, A.B. Thompson, S.J. Tereniak, M.R. DeStefano, C.T. Buru, Z. Li, R.L. Penn, O.K. Farha, J.T. Hupp, A. Stein, and C.C. Lu, “Assembly of dicobalt and cobalt–aluminum oxide clusters on metal–organic framework and nanocast silica supports,” Faraday Discussions, 2017, Web Publication March 16, 2017.
    DOI: 10.1039/C7FD00055C

  10. V. Bernales, D. Yang, J. Yu, G. Gümüşlü, C.J. Cramer, B.C. Gates, and L. Gagliardi, “Molecular Rhodium Complexes Supported on the Metal-Oxide-Like Nodes of Metal Organic Frameworks and on Zeolite HY: Catalysts for Ethylene Hydrogenation and Dimerization,” ACS Appl. Mater. Interfaces, 2017, Web Publication May 24, 2017.
    DOI: 10.1021/acsami.7b03858

  11. T. Islamoglu, S. Goswami, Z. Li, A. J. Howarth, O. K. Farha, and J. T. Hupp, “Postsynthetic Tuning of Metal–Organic Frameworks for Targeted Applications,” Accounts of Chemical Research, 2017, 50 (4), 805–813.
    DOI: 10.1021/acs.accounts.6b00577

  12. D. Ongari, D. Tiana, S. J. Stoneburner, L. Gagliardi, and B. Smit, “Origin of the Strong Interaction between Polar Molecules and Copper(II) Paddle-Wheels in Metal Organic Frameworks,” Journal of Physical Chemistry C, 2017, 121 (28), 15135–15144.
    DOI: 10.1021/acs.jpcc.7b02302

  13. M. Rimoldi, L.C. Gallington, K.W. Chapman, K. MacRenaris, J.T. Hupp, and O.K. Farha, “Catalytically Active Silicon Oxide Nanoclusters Stabilized in a Metal-Organic Framework,” Chemistry, a European Journal, 2017, 23 (35), 8532–8536.
    DOI: 10.1002/chem.201701902

  14. J.R. Avila, A.W. Peters, Z. Li, M.A. Ortuno, A.B.F. Martinson, C.J. Cramer, J.T. Hupp, and O.K. Farha, “Atomic layer deposition of Cu(I) oxide films using Cu(II) bis(dimethylamino-2-propoxide) and water,” Dalton Transactions, 2017, 46, 5790–5795.
    DOI: 10.1039/C6DT02572B

  15. Z. Li, A.W. Peters, J. Liu, X. Zhang, N.M. Schweitzer, J.T. Hupp and O.K. Farha, “Size effect of the active sites in UiO-66-supported nickel catalysts synthesized via atomic layer deposition for ethylene hydrogenation,” Inorganic Chemistry Frontiers, 2017, 4, 820–824.
    DOI: 10.1039/C7QI00056A

  16. J.L. Bao, S.O. Odoh, L. Gagliardi, and D.G. Truhlar, “Predicting Bond Dissociation Energies of Transition-Metal Compounds by Multiconfiguration Pair-Density Functional Theory and Second-Order Perturbation Theory Based on Correlated Participating Orbitals and Separated Pairs,” J. Chem. Theory and Comput., 2017, 13, 616–626.
    DOI: 10.1021/acs.jctc.6b01102

  17. K. Duanmu and. D.G. Truhlar, “Validation of Density Functionals for Adsorption Energies on Transition Metal Surfaces,” J. Chem. Theory and Comput., 2017, 3, 835–842.
    DOI: 10.1021/acs.jctc.6b01156

  18. D. Yang, M.R. Momeni, H. Demir, D.R. Pahls, M. Rimoldi, T.C. Wang, O. Farha, J.T. Hupp, C.J. Cramer, B.C. Gates, and L. Gagliardi, “Tuning the properties of metal–organic framework nodes as supports of single-site iridium catalysts: node modification by atomic layer deposition of aluminium ,” Faraday Discussions, Web Publication February 20.
    DOI: 10.1039/C7FD00031F

  19. Z. Li, A.W. Peters, V. Bernales, M.A. Ortuño, N.M. Schweitzer, M.R. DeStefano, L.C. Gallington, A.E. Platero-Prats, K.W. Chapman, C.J. Cramer, L. Gagliardi, J.T. Hupp, and O.K. Farha, “Metal–Organic Framework Supported Cobalt Catalysts for the Oxidative Dehydrogenation of Propane at Low Temperature,” ACS Central Science, 2017, 3, 31–38.
    DOI: 10.1021/acscentsci.6b00290

  20. M. Rimoldi, V. Bernales, J. Borycz, A. Vjunov, L.C. Gallington, A.E. Platero-Prats, I.S. Kim, J.L. Fulton, A.B.F. Martinson, J.A. Lercher, K.W. Chapman, C.J. Cramer, L. Gagliardi, J.T. Hupp, and O.K. Farha, “Atomic Layer Deposition in a Metal-Organic Framework: Synthesis, Characterization, and Performance of a Solid Acid,” Chemistry of Materials, 2017, 29, 1058–1068.
    DOI: 10.1021/acs.chemmater.6b03880

  21. R. Rimoldi, A.J. Howarth, M.R. DeStefano, L. Lin, S. Goswami, P. Li, J.T. Hupp, and O.K. Farha, “Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks,” ACS Catalysis, 2017, 7, 997–1014.
    DOI: 10.1021/acscatal.6b02923


  1. M. Yabushita, P. Li, H. Kobayashi, A. Fukuoka, O.K. Farha, and A, Katz, “Complete furanics–sugar separations with metal–organic framework NU-1000,” Chem. Commun., 2016, 52, 11791–11794.
    DOI: 10.1039/C6CC05864G

  2. A.W. Peters, Z. Li, O.K. Farha, and J.T. Hupp, “Toward Inexpensive Photocatalytic Hydrogen Evolution: A Nickel Sulfide Catalyst Supported on a High-Stability Metal–Organic Framework,” ACS Appl. Mater. Interfaces, 2016, 8, 20675–20681.
    DOI: 10.1021/acs.inorgchem.6b02103

  3. S. Ahn, N.E. Thornburg, Z. Li, T.C. Wang, L.C. Gallington, K.W. Chapman, J.M. Notestein, J.T. Hupp, and O.K. Farha, “Stable Metal–Organic Framework-Supported Niobium Catalysts,” Inorg. Chem., 2016, 55, 11954–11961.
    DOI: 10.1021/acs.inorgchem.6b02103

  4. S.T. Akin, V. Zamudio-Bayer, K. Duanmu∥, G. Leistner, K. Hirsch, C. Bülow, A. Ławicki, A. Terasaki, B. von Issendorff, D.G. Truhlar, J.T. Lau, and M.A. Duncan, “Size-Dependent Ligand Quenching of Ferromagnetism in Co3(benzene)n+ Clusters Studied with X-ray Magnetic Circular Dichroism Spectroscopy,” J. Phys. Chem.Lett., 2016, 7, 4568–4575.
    DOI: 10.1021/acs.jpclett.6b01839

  5. K. Duanmu, J. Friedrich, and D.G. Truhlar, “Thermodynamics of Metal Nanoparticles: Energies and Enthalpies of Formation of Magnesium Clusters and Nanoparticles as Large as 1.3 nm,” J. Phys. Chem. C, 2016, 120, 26110–26118.
    DOI: 10.1021/acs.jpcc.6b08371

  6. H.S. Yu, S.L. Li, and D.G. Truhlar, “Perspective: Kohn-Sham density functional theory descending a staircase,” J. Chem. Phys., 2016, 145, 130901.
    DOI: 10.1063/1.4963168

  7. J.M. Lownsbury, I.A. Santos-López, W. Zhang, C.T. Campbell, H.S. Yu, W.-G. Liu, C.J. Cramer, D.G. Truhlar, T. Wang, J.T. Hupp, and O.K. Farha, “Calcium Vapor Adsorption on the Metal–Organic Framework NU-1000: Structure and Energetics,” J. Phys. Chem. C, 2016, 120, 16850–16862.
    DOI: 10.1021/acs.jpcc.6b05707

  8. J.L. Bao, X. Zhang, X. Xu, and D.G. Truhlar, “Predicting bond dissociation energy and bond length for bimetallic diatomic molecules: a challenge for electronic structure theory,” Phys. Chem. Chem. Phys., 2016, 19, 5839–5854.
    DOI: 10.1039/C6CP08896A

  9. K. Duanmu, O. Roberto-Neto, F.B.C. Machado, J.A. Hansen, J. Shen, P. Piecuch, and D.G. Truhlar, “Geometries, Binding Energies, Ionization Potentials, and Electron Affinities of Metal Clusters: Mgn0, ± 1, n = 1–7,” J. Phys. Chem. C, 2016, 120, 13275–13286.
    DOI: 10.1021/acs.jpcc.6b03080

  10. H.S. Yu and D.G. Truhlar, “Oxidation State 10 Exists,” Angewandte Chemie International Ed., 2016, 55, 9004–9006.
    DOI: 10.1002/anie.201604670

  11. H.S. Yu, X. He, and D.G. Truhlar, “MN15-L: A New Local Exchange-Correlation Functional for Kohn–Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids,” J. Chem. Theory. Comput., 2016, 12, 1280–1293.
    DOI: 10.1021/acs.jctc.5b01082

  12. F. Aquilante, J. Autschbach, R.K. Carlson, L.F. Chibotaru, M.G. Delcey, L. De Vico, I.F. Galván, N. Ferré, L.M. Frutos, L. Gagliardi, M. Garavelli, A. Giussani, C.E. Hoyer, G.L. Manni, H. Lischka, D. Ma, P.Å. Malmqvist, T. Müller, A. Nenov, M. Olivucci, T.B. Pedersen, D. Peng, F. Plasser, B. Pritchard, M. Reiher, I. Rivalta, I. Schapiro, J. Segarra-Martí, M. Stenrup, D.G. Truhlar, L. Ungur, A. Valentini, S. Vancoillie, V. Veryazov, V.P. Vysotskiy, O. Weingart, F. Zapata, R. Lindh, “Molcas 8: New capabilities for multiconfigurational quantum chemical calculations across the periodic table,” J. Comp. Chem., 2016, 37, 506-541.
    DOI: 10.1002/jcc.24221

  13. L.C. Gallington, I.S. Kim, W.-G. Liu, A.A. Yakovenko, A.E. Platero-Prats, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, D.G. Truhlar, A.B.F. Martinson, and K.W. Chapman, “Regioselective Atomic Layer Deposition in Metal–Organic Frameworks Directed by Dispersion Interactions,” J. Am. Chem. Soc., 2016, 138 (41), 13513–13516.
    DOI: 10.1021/jacs.6b08711

  14. D. Yang, V. Bernales, T. Islamoglu, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, and B.C. Gates, “Tuning the Surface Chemistry of Metal Organic Framework Nodes: Proton Topology of the Metal-Oxide-Like Zr6 Nodes of UiO-66 and NU-1000,” 2016, J. Am. Chem. Soc., 138 (46), 15189–15196.
    DOI: 10.1021/jacs.6b08273

  15. S. Pellizzeri, I.A. Jones, H.A. Doan, R.Q. Snurr, and R.B. Getman, “Using Gas-Phase Clusters to Screen Porphyrin-Supported Nanocluster Catalysts for Ethane Oxidation to Ethanol,” Catalysis Letters, 2016, 146, 2566.
    DOI: 10.1007/s10562-016-1890-7

  16. H. Noh, Y. Cui, A.W. Peters, D.R. Pahls, M.A. Ortuño, N.A. Vermeulen, C.J. Cramer, L. Gagliardi, J.T. Hupp, and O.K. Farha, “An Exceptionally Stable Metal–Organic Framework Supported Molybdenum(VI) Oxide Catalyst for Cyclohexene Epoxidation,” J. Am. Chem. Soc., 2016, 138 (44), 14720–14726.
    DOI: 10.1021/jacs.6b08898

  17. M.A. Ortuño, V. Bernales, L. Gagliardi, and C.J. Cramer, “Computational Study of First-Row Transition Metals Supported on MOF NU-1000 for Catalytic Acceptorless Alcohol Dehydrogenation,” J. Phys. Chem. C, 2016, 120 (43), 24687–24705.
    DOI: 10.1021/acs.jpcc.6b06381

  18. A.J. Howarth, A.W. Peters, N.A. Vermeulen, T.C. Wang, J.T. Hupp, and O.K. Farha, “Best Practices for the Synthesis, Activation, and Characterization of Metal–Organic Frameworks,” 2016, Chem. Mater., 29 (1), 26–39.
    DOI: 10.1021/acs.chemmater.6b02626

  19. V. Bernales, A.B. League, Z. Li, N.M. Schweitzer, A.W. Peters, R.K. Carlson, J.T. Hupp, C.J. Cramer, O.K. Farha, and L. Gagliardi, “Computationally-Guided Discovery of Catalytic Cobalt-Decorated Metal–Organic Framework for Ethylene Dimerization,” J. Phys. Chem. C, 2016, 120 (41), 23576–23583.
    DOI: 10.1021/acs.jpcc.6b07362

  20. I.S. Kim, O.K. Farha, J.T. Hupp, L. Gagliardi, K.W. Chapman, C. Cramer, and A.B.F. Martinson, “A Precise and Scalable Post-Modification of Mesoporous Metal-Organic Framework NU-1000 Via Atomic Layer Deposition,” ECS Transactions, 2016, 75 (6), 93–99.
    DOI: 10.1149/07506.0093ecst

  21. A.B. Thompson, D.R. Pahls, V. Bernales, L.C. Gallington, C.D. Malonzo, T. Webber, S.J. Tereniak, T.C. Wang, S.P. Desai, Z. Li, I.S. Kim, L. Gagliardi, R.L. Penn, K.W. Chapman, A. Stein, O.K. Farha, J.T. Hupp, A.B.F. Martinson∥, and C C. Lu, “Installing Heterobimetallic Cobalt–Aluminum Single Sites on a Metal Organic Framework Support,” Chem. Mater., 2016, 28 (18) 6753–6762.
    DOI: 10.1021/acs.chemmater.6b03244

  22. T.-F. Liu, N.A. Vermeulen, A.J. Howarth, P. Li, A.A. Sarjeant, J.T. Hupp, and O.K. Farha, “Adding to the Arsenal of Zirconium-Based Metal–Organic Frameworks: the Topology as a Platform for Solvent-Assisted Metal Incorporation,” Eur. J. Inorg. Chem., 2016, 7, 4349–4352.
    DOI: 10.1002/ejic.201600627

  23. M. Rimoldi, A. Nakamura, N.A. Vermeulen, J.J. Henkelis, A.K. Blackburn, J.T. Hupp, J.F. Stoddart, and O.K. Farha, “A Metal-Organic Framework Immobilised Iridium Pincer Complex,” Chem. Sci., 2016, 7, 4980–4984.
    DOI: 10.1039/C6SC01376G

  24. M. Yabushita, P. Li, V. Bernales, H. Kobayashi, A. Fukuoka, L. Gagliardi, O.K. Farha, and A. Katz, “Unprecedented selectivity in molecular recognition of carbohydrates by a metal-organic framework,” Chem. Commun., 2016, 52, 7094–7097.
    DOI: 10.1039/C6CC03266D

  25. A.E. Platero-Prats, A. Mavrandonakis, L.C. Gallington, Y. Liu, J.T. Hupp, O.K. Farha, C.J. Cramer, and K.W. Chapman, “Structural Transitions of the Metal-Oxide Nodes within Metal− Organic Frameworks: On the Local Structures of NU-1000 and UiO-66,” J. Am. Chem. Soc., 2016, 138 (12), 4178–4185.
    DOI: 10.1021/jacs.6b00069

  26. H.S. Yu, X. He, S.L. Li, and D.G. Truhlar, “MN15: A Kohn-Sham Global-Hybrid Exchange-Correlation Density Functional with Broad Accuracy for Multi-Reference and Single-Reference Systems and Noncovalent Interactions,” Chem. Sci., 2016, 7, 5032–5051.
    DOI: 10.1039/C6SC00705H

  27. R.C. Klet, T.C. Wang, L.E. Fernandez, D.G. Truhlar, J.T. Hupp, O.K. Farha, “Synthetic Access to Atomically Dispersed Metals in Metal-Organic Frameworks via a Combined Atomic-Layer-Deposition-in-MOF and Metal Exchange Approach,” Chem. Mater., 2016, 28 (4), 1213–1219.
    DOI: 10.1021/acs.chemmater.5b04887

  28. A.J. Howarth, Y. Liu, P. Li, Z. Li, T.C. Wang, J.T. Hupp, O.K. Farha, “Chemical, thermal and mechanical stabilities of metal–organic frameworks,” Nat. Rev. Mats., 2016, 1, 15018.
    DOI: 10.1038/natrevmats.2015.18

  29. C.D. Malonzo, S.M. Shaker, L. Ren, S.D. Prinslow, A.E. Platero-Prats, L.C. Gallington, J. Borycz, A.B. Thompson, T.C. Wang, O.K. Farha, J.T. Hupp, C.C. Lu, K.W. Chapman, J.C. Myers, R.L. Penn, L. Gagliardi, M. Tsapatsis, and A. Stein, “Thermal Stabilization of Metal–Organic Framework-Derived Single-Site Catalytic Clusters Through Nanocasting,” J. Am. Chem. Soc., 2016, 138 (8), 2739–2748.
    DOI: 10.1021/jacs.5b12688

  30. Z. Li, N.M. Schweitzer, A.B. League, V. Bernales, A.W. Peters, A.B. Getsoian, T.C. Wang, J.T. Miller, A. Vjunov, J.L. Fulton, J.A. Lercher, C.J. Cramer, L. Gagliardi, J.T. Hupp, and O.K. Farha, “Sintering-Resistant Single-Site Nickel Catalyst Supported by Metal-Organic Framework,” J. Am. Chem. Soc., 2016, 138 (6), 1977–1982.
    DOI: 10.1021/jacs.5b12515

  31. D. Yang, S.O. Odoh, J. Borycz, T.C. Wang, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, and B.C. Gates, “Tuning Zr6 MOF Nodes as Catalyst Supports: Site Densities and Electron-Donor Properties Influence Molecular Iridium Complexes as Ethylene Conversion Catalysts,” ACS Catalysis, 2016, 6, 235–247.
    DOI: 10.1021/acscatal.5b02243

  32. T.C. Wang, N.A. Vermeulen, I.S. Kim, A.B.F. Martinson, J.F. Stoddart, J.T. Hupp, and O.K. Farha, “Scalable synthesis and post-modification of a mesoporous metal-organic framework called NU-1000,” Nature Protocols, 2016, 11, 149–162.
    DOI: 10.1038/nprot.2016.001


  1. H. Yu and D.G Truhlar, “Components of the Bond Energy in Polar Diatomic Molecules, Radicals, and Ions Formed by Group-1 and Group-2 Metal Atoms,” J. Chem. Theory. Comput., 2015, 11, 2968–2983.
    DOI: 10.1021/acs.jctc.5b00083

  2. S.T. Madrahimov, J.R. Gallagher, G. Zhang, Z. Meinhart, S.J. Garibay, M. Delferro, J.T. Miller, O.K. Farha, J.T. Hupp, and S.T. Nguyen, “Gas-Phase Dimerization of Ethylene under Mild Conditions Catalyzed by MOF Materials Containing (bpy)NiII Complexes,” ACS Catalysis, 2015, 5, 6713–6718.
    DOI: 10.1021/acscatal.5b01604

  3. S.T. Dix, J.K. Scott, R.B. Getman, and C.T. Campbell, “Using degrees of rate control to improve selective n-butane oxidation over model MOF-encapsulated catalysts: sterically-constrained Ag3Pd(111),” Faraday Discussions, 2015.
    DOI: 10.1039/C5FD00198F

  4. R. Klet, S. Tussupbayev, J. Borycz, J.R. Gallagher, M.M. Stalzer, J.T. Miller, L. Gagliardi, J.T. Hupp, T.J. Marks, C.J. Cramer, M. Delferro, and O.K. Farha, “Single-Site Organozirconium Catalyst Embeded in a Metal-Organic Framework,” J. Am. Chem. Soc., 2015, 137, 15680–15683.
    DOI: 10.1021/jacs.5b11350

  5. L.J. Clouston, V. Bernales, R.C. Cammarota, R.K. Carlson, E. Bill, L. Gagliardi, and C.C. Lu, “Heterobimetallic Complexes that Bond Vanadium to Iron, Cobalt, and Nickel,” Inorg. Chem., 2015, 54 (24), 11559–11679.
    DOI: 10.1021/acs.inorgchem.5b01631

  6. R.J. Eisenhart, R.K. Carlson, L.J. Clouston, V.G. Young Jr., Y. Chen, E. Bill, L. Gagliardi, and C.C. Lu. “Influence of Copper Oxidation State on the Bonding Electronic Structure of Cobalt-Copper Complexes,” Inorg. Chem., 2015, 54 (23), 11330–11338.
    DOI: 10.1021/acs.inorgchem.5b01950

  7. A.W. Peters, Z. Li, O.K. Farha, and J.T. Hupp, “Atomically Precise Growth of Catalytically Active Cobalt Sulfide on Flat Surfaces and within a Metal-Organic Framework via Atomic Layer Deposition,” ACS Nano., 2015, 9, 8484–8490.
    DOI: 10.1021/acsnano.5b03429

  8. R.C. Cammarota and C.C. Lu, “Tuning Nickel with Lewis Acidic Group 13 Metalloligands for Catalytic Olefin Hydrogenation,” J. Am. Chem. Soc., 2015, 137 (39), 12486–12489.
    DOI: 10.1021/jacs.5b08313

  9. R.K. Carlson, S.O. Odoh, S.J. Tereniak, C.C. Lu, and L. Gagliardi, “Can Multiconfigurational Self-Consistent Field Theory and Density Functional Theory Correctly Predict the Ground State of Metal–Metal-Bonded Complexes?” J. Chem. Theory Comput., 2015, 11 (9), 4093–4101.
    DOI: 10.1021/acs.jctc.5b00412

  10. R.J. Eisenhart, P.A. Rudd, N.Planas, D.W. Boyce, R.K. Carlson, W.B. Tolman, E. Bill, L. Gagliardi, and C.C. Lu, “Pushing the Limits of Delta Bonding in Metal–Chromium Complexes with Redox Changes and Metal Swapping,” Inorg. Chem., 2015, 54 (15), 7579–7592.
    DOI: 10.1021/acs.inorgchem.5b01163

  11. L.J. Clouston, V. Bernales, R.K. Carlson, L. Gagliardi, and C.C. Lu, “Bimetallic Cobalt–Dinitrogen Complexes: Impact of the Supporting Metal on N2 Activation,” Inorg. Chem., 2015, 54 (19), 9263–9270.
    DOI: 10.1021/acs.inorgchem.5b00983

  12. D. Yang, S.O. Odoh, T.C. Wang, O.K. Farha, J.T. Hupp, C.J. Cramer, L. Gagliardi, and B.C. Gates, “Metal-organic framework nodes as nearly ideal supports for molecular catalysts: NU-1000- and UiO-66-supported iridium complexes,” J. Am. Chem. Soc., 2015, 137 (23), 7391–7396.
    DOI: 0.1021/jacs.5b02956

  13. K. Duanmu and D.G. Truhlar, “Validation of Methods for Computational Catalyst Design: Geometries, Structures, and Energies of Neutral and Charged Silver Clusters,” J. Phys. Chem. C, 2015, 119 (17), 9617–9626.
    DOI: 10.1021/acs.jpcc.5b01545

  14. H.S. Yu, W. Zhang, P. Verma, X. He, and D.G. Truhlar, “Nonseparable Exchange-Correlation Functional for Molecules, Including Homogeneous Catalysis Involving Transition Metals,” Phys. Chem. Chem. Phys., 2015, 17, 12146–12160.
    DOI: 10.1039/C5CP01425E

  15. R.K. Carlson, D.G. Truhlar, and L. Gagliardi, “Multiconfiguration Pair-Density Functional Theory: A Fully Translated Gradient Approximation and Its Performance for Transition Metal Dimers and the Spectroscopy of Re2Cl82–,” J. Chem. Theory Comput., 2015, 11 (9), 4077–4085.
    DOI: 10.1021/acs.jctc.5b00609

  16. R.B. Siedschlag, V. Bernales, K.D. Vogiatzis, N. Planas, L.J. Clouston, E. Bill, L. Gagliardi, and C.C. Lu, “Catalytic Silylation of Dinitrogen with a Dicobalt Complex,” J. Am. Chem. Soc., 2015,137 (14), 4638-4641.
    DOI: 10.1021.jacs.5b01445

  17. C. A. Wolcott, A.J. Medford, F. Studt, and C.T. Campbell, “Degree of Rate Control Approach to Computational Catalyst Screening,” J. Catal., 2015, 330, 197–207.
    DOI: 10.1016/j.jcat.2015.07.015,

  18. R.K. Carlson, G. Li Manni, A.L. Sonnenberger, D.G. Truhlar, and L. Gagliardi, “Multiconfiguration Pair-Density Functional Theory: Barrier Heights and Main Group and Transition Metal Energetics,” J. Chem. Theory Comput., 2015, 11 (1), 82–90.
    DOI: 10.1021/ct5008235

  19. J.S. Bao, H.S. Yu, K. Duanmu, M. Makeev, X. Xu, and D.G. Truhlar, “Density Functional Theory of the Water Splitting Reaction on Fe(0): Comparison of Local and Nonlocal Correlation Functionals,” ACS Catalysis, 2015, 5, 2070–2080.
    DOI: 10.1021/cs501675t

  20. R.J. Eisenhart, R.K. Carlson, K.M. Boyl, L. Gagliardi, and C.C. Lu, “Synthesis and redox reactivity of a phosphine-ligated dichromium paddlewheel,” Inorg. Chem. Acta., 2015, 424, 336–344.
    DOI: 10.1016/j.ica.2014.10.013

  21. T.C. Wang, W. Bury, D.A. Gómez-Gualdrón, N.A. Vermeulen, J.E. Mondloch, P. Deria, K. Zhang, P.Z. Moghadam, A.A. Sarjeant, R.Q. Snurr, J.F. Stoddart, J.T. Hupp, and O.K. Farha, “Ultrahigh Surface Area Zirconium MOFs and Insights into the Applicability of the BET Theory,” J. Am. Chem. Soc., 2015, 137 (10), 3585–3591.
    DOI: 10.1021/ja512973b

  22. I.S. Kim, J. Borycz, A. Platero-Plats, S. Tussupbayev, T. Wang, O. Farha, J. Hupp, L. Gagliardi, K. Chapman, C. Cramer, and A. Martinson, “Targeted Single-site MOF Node Modification: Trivalent Metal Loading via Atomic Layer Deposition,” Chem. Mater,. 2015, 27 (13), 4772–4778.
    DOI: 10.1021/acs.chemmater.5b01560


  1. B. Wang, S.L. Li, and D.G. Truhlar, “Modeling the Partial Atomic Charges in Inogranometallic Molecules and Solids and Charge Redistribution in Lithium-Ion Cathodes,” J. Chem. Theory and Comp., 2014, 10, 5640–5650.
    DOI: 10.1021/ct500790p

  2. K. Duanmu and D.G. Truhlar, “Partial Ionic Character Beyond the Pauling Paradigm: Metal Nanoparticles,” J. Phys. Chem. C, 2014, 18, 28069–28074.
    (featured in C & E News).
    DOI: 10.1021/jp511055k

This work was supported as part of the Inorganometallic Catalyst Design Center, an Energy Frontier Research Center funded by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences (BES), under Award DE-SC0012702.

Department of Energy logo

Contact Information

Department of Chemistry

207 Pleasant Street SE, Minneapolis, MN, 55455

P: 612-625-2636 | E:

For Students, Faculty, and Staff

© 2015 Regents of the University of Minnesota. All rights reserved. The University of Minnesota is an equal opportunity educator and employer. Privacy Statement